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ABSTRACT 
 

Heavily doped surfaces—often called emitters, diffusions, 
or back-surface fields—are complicated regions of a solar 
cell.  In these regions, the dopant concentration varies 
over many orders of magnitude in a short distance, 
causing large variations in the minority carrier 
concentration, Auger recombination, Shockley–Read–Hall 
recombination, carrier mobility and even the band gap.  
Moreover, when the diffusion is heavily doped, the 
semiconductor becomes degenerate and the carrier 
concentrations must be calculated with Fermi–Dirac 
statistics rather than the simpler Boltzmann statistics.  
Until now, computer simulation packages that account for 
all of these aspects are either expensive or not freely 
accessible, and they do not cater specifically to the PV 
industry.  We therefore present a new freeware computer 
program that models a 1D emitter in silicon.  Given a user-
defined dopant profile, a surface recombination velocity, 
and an incident spectrum, the program calculates 
recombination as a function of depth within the emitter and 
as a function of the applied voltage.  This permits the 
computation of the emitter saturation current density, the 
transparency factor, the collection current density, and the 
collection efficiency.  The program can be applied to both 
phosphorus and boron diffusions and will assist in their 
optimisation for practical solar cells.  In this paper, we 
present the equations, the assumptions, and the 
procedure that are employed by the freeware program. 

 
INTRODUCTION 

 
 All silicon solar cells contain heavily doped regions.  
Frequently called “emitters” or “diffusions” or “back-surface 
fields”, the heavily doped regions have a high 
concentration of majority carriers and therefore a low 
concentration of minority carriers.  Depending on these 
concentrations—and on boundary conditions such as the 
surface recombination velocity and the junction voltage—
the presence of a heavily doped region can either increase 
or decrease the amount of recombination that would 
otherwise occur.  It is critical, therefore, that the dopant 
concentrations be optimised. 
 Emitters are often optimised experimentally because 
they are difficult to model.  In an emitter, the dopant 
concentration varies over many orders of magnitude in a 
short distance, which causes rapid variation in the minority 
carrier concentration, Auger recombination, Shockley–
Read–Hall (SRH) recombination, carrier mobility and even 
the band gap.  Moreover, when the diffusion is heavily 
doped, the semiconductor becomes degenerate, and the 

carrier concentrations must be calculated with Fermi–
Dirac statistics rather than the simpler Boltzmann 
statistics. 
 There are computer packages that solve the complete 
set of semiconductor equations and are capable of 
accurately modelling emitters [14, 17];  they are, however, 
expensive and over qualified for the 1D steady-state 
quasi-neutral solutions that are satisfactory for solar cell 
studies.  The highly useful PC1D freeware program [2] 
employs neither Fermi–Dirac statistics nor the most recent 
mobility model and is consequently inaccurate for heavily 
doped emitters.  There are also a plethora of analytical 
equations that can be used to model emitters that have 
varying degrees of inaccuracy depending on their level of 
complexity—well summarised in [6], [10], and [16]—but 
with modern computer power these analytical solutions 
save little time compared to the complete numerical 
solution employed in [6], [18] and this work.  Nevertheless, 
we do not neglect the benefits that understanding such 
analytical models brings.   
 The program presented here is the first readily 
accessible and free computer program that accurately 
models a heavily doped emitter.  We first list the major 
inputs and outputs of the model, and then summarise the 
program’s general procedure using an example. The steps 
are listed and the required equations and assumptions are 
provided or cited.  The program can be attained by 
contacting either author. 
 

MAJOR INPUTS AND OUTPUTS 

 
 The program requires the user to define the following 
main inputs: 

(i) donor and acceptor dopant profiles, 
(ii) surface recombination velocity, 
(iii) models for mobility and Auger recombination, 
(iv) generation profile (or alternatively, an incident 

spectrum and transmission curve).  

 The program then computes the following outputs: 
(i) emitter saturation current J0E, 

(ii) transparency factor T, 
(iii) collection current JLE, 

(iv) collection efficiency E, 

(v) a breakdown of the recombination mechanisms. 
 

EXAMPLE AND SUMMARY OF PROCEDURE 

 
 The user first defines the donor and acceptor dopant 
profiles, ND(x) and NA(x).  Figure 1(a) gives example  
profiles, where ND(x) is a Gaussian profile with a surface 



 
 

concentration of 10
20

 cm
–3

 and a junction depth of 1.5 µm.  
This equates to an equilibrium sheet resistance of 10.6 

/sq for a phosphorus-doped diffusion in which 100% of 

the dopants are activated.  In the example, NA(x) is 
constant and equal to 10

14
 cm

–3
, equivalent to a bulk 

resistivity of 133 -cm for boron-doped silicon. 
 With these profiles, the program computes the energy 
of the conduction band Ec, valence band Ev and Fermi 
level EF, all relative to the intrinsic Fermi energy Ei.  At 
first, they are computed at equilibrium—i.e., in the dark 
with no applied voltage.  Figure 1(b) plots this data for the 
example, showing how the band gap decreases as ND 
increases.  It also shows how EF exceeds Ec when ND is 
high, meaning that the semiconductor is degenerate and 
Fermi–Dirac statistics must be employed rather than 
Boltzmann statistics.  Thus, an accurate assessment of 
this emitter must compute Ec, Ev and EF with appropriate 
models for band-gap narrowing (BGN) and degeneracy. 
 The next step is to determine the product of the 
electron and hole concentrations, n(x)p(x).  In intrinsic 
silicon, it is equal to the square of the intrinsic carrier 
concentration ni

2
, but any change in Ec, Ev and EF causes 

it to vary.  Instead, n(x)p(x) = BGNdegni
2
, where BGN and 

deg are factors that account for BGN and degeneracy [1].  
They are plotted in Figure 1(c).  Notice that BGN acts to 
increase n(x)p(x) while degeneracy acts to decrease 
n(x)p(x).  Combined, n(x)p(x) is greater than ni

2
, peaking 

at ND ~ 10
19

 cm
–3

.  The figure also plots Boltz, which is the 
single factor that is used to calculate n(x)p(x) when using 

Boltzmann statistics and a common BGN model [2];  it 

differs from the more correct prefactor, BGNdeg. 

 Once BGN and deg have been computed, the program 
can determine the equilibrium minority carrier 
concentration.  Figure 1(d) compares the hole 
concentration p0(x) when it is correctly calculated (solid 
line) to when it is calculated assuming no BGN or 
degeneracy.  They differ by about an order of magnitude. 
 With the equilibrium conditions established, the 
program solves for several steady-state conditions.  These 
include short-circuit (SC) and open-circuit (OC) under 
illumination, and a range of voltages in the dark.  The 
solutions provide n(x) and p(x) for each steady-state 
condition, and they require the user to define the 
generation profile G(x), the surface recombination velocity 

S, the SRH lifetime in the diffusion D, and models for the 

carrier mobility and Auger recombination.  In this example, 
G(x) equates to a generation current of JG = 40 mA/cm

2
, 

where the wavelength of the incident light is set at 400 nm 
so that all generation occurs near the front surface (to 
keep the example simple);  S is set at 10

5
 cm/s, which is 

typical of hydrogenated oxide passivation on such heavily 

doped silicon [1];  D is set at 100 µs;  the mobility model is 

that of Klaassen [3, 4]; and the Auger model is that of Kerr 
and Cuevas [5].  The solutions are made using the 
shooting method and following del Alamo and Swanson’s 
approach [6, 19] summarised in Appendix C. 
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Figure 1:  Example simulation as described in the text. 

Table I:  Breakdown of generated current in mA/cm
2
. 

  SC OC 

Collected 17.51 (43.8%) – 
Auger recomb in diffusion 6.07 (15.2%) 15.71 (39.3%) 
SRH recomb in diffusion 0.00 (0.0%) 0.04 (0.1%) 
SRH recomb at surface 16.42 (41.0%) 24.25 (60.7%) 

Total 40.00  40.00 



 
 

 Figure 1(e) plots the excess carrier concentration n(x) 

(assuming quasi-neutrality, n = p) for a range of 

voltages under illumination.  Notice how n(x) increases 

as the voltage increases from SC to OC.  This causes the 
emitter depth to decrease, as evidenced by the 

intersection between n(x) and n0(x).  (Here the emitter is 

defined by the carrier concentrations rather than the 
dopant concentrations.) This ‘shrinking’ of the emitter at 
high voltages is an important aspect that, to our 
knowledge, has not been considered in other emitter 
modelling studies that extract a JLE. 
 Figure 1(f) plots the mobility of holes µp and electrons 
µn at SC as determined by the model of Klaassen [3, 4].  
In fact, the mobilities are the same at equilibrium and at 
OC in the low-injection regions of the emitter. 
 Figure 1(g) plots G(x), SRH recombination USRH(x), 
and Auger recombination UAug(x) in the emitter at SC and 
OC.  It does not plot SRH recombination at the surface Us 
(which is more significant than USRH(x)) because its units 
are cm

–2
s

–1
 rather than cm

–3
s

–1
.  In this example, UAug(x) is 

much greater than USRH(x), which is generally true of 
heavy emitters but not necessarily of light emitters.  
Table I lists the fraction of photocurrent that is either 
collected or recombined at SC and OC. 
 Figure 1(h) plots the hole current Jp(x) at SC and OC.  
It shows how the current is negative near the surface, 
meaning that more holes flow to recombine at the surface 
than flow towards the junction.  At SC, Jp(x) at the junction 
is the collection current from the emitter JLE.  At OC, Jp(x) 
at the junction must be zero (by definition of OC). 
 Emitters are frequently defined by one of four figures 
of merit: (i) the saturation current J0E, (ii) the transparency 

factor T (iii) the collection current JLE, and (iv) the 

collection efficiency E (or quantum efficiency).  All three 

of these parameters are determined by the program.  In 
this example they are constant with the applied voltage Vj 

and determined to be J0E = 190 fA/cm
2
, T = 44.8%, JLE = 

17.5 mA/cm
2
, and E = 43.8%. 

 We now describe the computational steps in detail.  
The notation assumed the majority carriers are electrons, 
while analogous equations can be derived when the 
majority carriers are holes. 
 
 

COMPUTATIONAL STEPS 

 
1) The intrinsic carrier concentration ni is calculated from 

three fundamental parameters of intrinsic silicon: the 
energy of the band gap Eg0, the density of valence-
band states Nv, and the density of conduction-band 
states Nc, by the equation, 

  ni
2
 = Nv Nc exp(Eg0/kBT), (1) 

 where kB is the Boltzmann constant and T is the 

absolute temperature. 

 Eg0 is determined from one of the following three T-
dependent models, as selected by the user: (i) Eq 23 
of Pässler [11], (ii) Eqs 4 and 5 of Bludau et al. [12] 

with an extension by Green [13], or (iii) Eq 125 of the 
Sentaurus manual [14].  And T-dependent values for 
NC and NV are determined from Green [13] following 

either the simple formulae (Eqs 14 and 15 in [13]) or 
the more complex formulae (Eqs 4, 5, 6, 8, 9 and 13 in 
[13]), as selected by the user.  

2) The user defines the donor dopant profile ND(x) and 
the acceptor dopant profile NA(x), from which the net 
doping is calculated, 

  N(x) = ND(x) – NA(x). (2) 

 In the same manner as PC1D [2], the diffusion profile 
can be calculated from uniform, exponential, 
Gaussian, or ERFC functions, or it can defined from 
experimental data. 

3) The majority carrier concentration is determined as 

  n0(x) = N(x), (3) 

  which assumes complete ionisation of the dopants.  
4) Initial values for the majority and minority carrier 

profiles are determined as 

  n(x) = n0(x), and (4a) 

  p(x) = ni
2
/N(x). (4b) 

 These initial values correspond to the silicon being in 
equilibrium with no BGN or degeneracy. 

5) BGN is taken into account by calculating the reduction 

in energy of the valence band edge Ev(x) and the 

conduction band edge Ec(x) from p(x), n(x), NA(x) and 
ND(x) as described by Schenk [7] and shown in 
Appendix A.  The band gap can then be calculated, 

  Eg(x) = Eg0 – Eg(x) = Eg0 – [Ec(x) + Ev(x)]. (5) 

6) A new equilibrium n0(x)p0(x) product is determined by 
following Altermatt et al. [1] as described in Appendix 
B.  This accounts for BGN and degeneracy, where the 
latter requires the Fermi–Dirac function.  The 
equilibrium n0(x)p0(x) product corresponds to there 
being no generation or applied voltage. 

7) The equilibrium minority carrier concentration p0(x) is 

then calculated by maintaining the assumption that 
n0(x) = N(x). 

 
At this point, one could iterate through Steps 5–7 to 
determine more precise values for the equilibrium 
concentrations, p0(x) and n0(x).  Additional iterations are, 
however, rarely required because BGN is mostly affected 
by the majority and not the minority carrier concentration. 
 
8) The user defines the generation profile G(x), the 

surface recombination velocity S, and the SRH 

minority carrier lifetime in the diffusion D.  (A future 

version of the program will incorporate the full SRH 
equation.)  The user also selects an Auger 
recombination model.  If desired, G(x) is determined 
for a user-defined spectrum and reflection.  Suitable 
values of S for oxide-passivated Si can be found in [1]. 

9) The minority carrier current Jp(x) and the excess 

carrier concentration p(x) are computed in a similar 

manner to that presented by del Alamo and Swanson 
[6, 19] and described in Appendix C.  They are 
determined for: 

 (a) dark JV curve by sweeping p(0) when G(x) = 0, 



 
 

 (b) light JV curve by sweeping p(0) when G(x)  0, 

 (c) short-circuit by solving for Jp(xj) = 0, and 

 (d) open-circuit by solving for p(xj) = 0. 

 Here, xj is defined as x when n0(x) = p(x);  as evident 
in Figure 1(e), xj decreases with increasing Vj. 

 Steps 9(a)–9(d) entail calculating solutions for p(x), 
n(x), µp(x), U(x), USRH(x), UAug(x) and Us;  and solutions 
for Ev(x), Ec(x), EFp(x) and EFn(x) relative to Ei.  Note 
that Ec(x) – EFn(x) is unaffected by BGN because n0(x) 
is assumed constant (i.e. Ec(x) and EFn(x) decrease by 

the same Ec(x)). 

 
After Step 9, we have steady-state solutions after a single 
iteration.  If the new p(x) and n(x) alter the degree of BGN 

compared to the equilibrium condition, then additional 
iterations are required through Steps 5–7 and 9. 
 

10) Lastly, J0E, T, JLE, and E are calculated as a function 
of the applied voltage Vj in the following way: 

 a) J0E is calculated from dark solutions [6, 19, 10] with 
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 Equation 6b is adequate with our definition of xj.  The 
program determines J0E in the dark over a range of Vj, 
and remains constant when the dominant source of 

recombination in the emitter is proportional to p(x) for 
all Vj.   These conditions are frequently met in practice 
although J0E can vary with Vj when surface charge is 
significant (not permitted in the current version of the 
program) and when SRH recombination in the emitter 
is dominant. 

 b) T is calculated from the dark solutions as [6, 15] 

  
)(

)0(

jp

p
T

xJ

J
 . (7) 

 It quantifies the fraction of carriers that recombine at 
the surface rather than in the diffusion. 

 c) JLE is calculated from light solutions [6, 19, 10] with 
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 which is the more general equation to Equation 6b and 
is valid for low injection.  The program determines JLE 
as a function of Vj by assuming J0E to be independent 
of Vj.  Importantly, JLE decreases with Vj when G(x) is 
significant at x > xj because xj decreases with 
increasing Vj.  (In the example above, G(x) is 
insignificant at x > xj, and hence JLE is constant with 
Vj.) 

 d) E is defined as [10] 

  
dxxGq

J

J

J

jx

x

LE

G

LE
E
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0
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 which tends to be constant with Vj because it accounts 
for the changes in generation as xj decreases with Vj. 

 
CONCLUSION 

 
 This paper described a new freeware computer 
program that analyses the recombination and collection 
associated with a phosphorus or boron emitter.  It 
provided the procedure and the many assumptions and 
equations entailed.  The program will permit a more 
readily accessible means to optimise emitters, determine 
surface recombination velocities, and to understand the 
many complexities of an emitter.  The program will be 
upgraded as suggestions (and corrections) from users are 
received, and a more rigorous description of its equations 
and assumptions will be developed (compared to that 
given here).  The intention is to have an engagement with 
the photovoltaic engineers to ensure it provides a valuable 
optimisation and educational tool.  We caution the user, 
however, that the results of this program—and other 
programs that solve the semiconductor equations—
depend critically on the models employed for the minority 

carrier mobility, Auger recombination and bgndegni
2
.  

Problems associated with experimentally determining 
these models are well described by del Alamo [19]. 
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APPENDIX A 

 
Here we state the equations from Schenk’s seminal paper 
on BGN in crystalline silicon [7] that are used in the 
freeware program.  We follow Schenk’s notation where 
there is no ambiguity, noting that (i) ne and nh are the 

dimensionless electron and hole concentrations that relate 

to n and p by the excitonic Bohr radius aex by 3
exe nan   

and 3
exh pan  ; (ii) pe and ph are constants and not hole 

concentrations; (iii)  is employed to represent the curly T 
in [7], which is not available in our equation editor; and (iv) 
nionic is used rather than Schenk’s ni to avoid confusion 
with the intrinsic carrier concentration defined above. 
 In [7], Schenk derives equations for BGN from 
quantum mechanical principles.  There are two 
components that sum to give the total BGN, 

  i
c

xc
cc EEE  , and (A1a) 

  i
v

xc
vv EEE  , (A1b) 

where xc
cE  and xc

vE  are the rigid quasi-particle shifts 

of the conduction and valence band edges, which depend 

on the free-carrier concentrations; and i
cE  and i

vE  are 

the ionic quasi-particle shifts of the conduction and 
valence band edges, which depend on the ionised dopant 
concentrations.  Neither are simple to derive or 
understand.  Here, we simply state the relevant equations, 
in [7],  
 The rigid quasi-particle shifts are given by 

  xc
eex

xc
c RyE  , (A2a) 

  xc
hex
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v RyE  , (A2b) 

where (Eq. 33 in [7]) 
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and the ionic quasi-particle shifts are given by 

  i
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i
c RyE  , and (A4a) 
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where (Eq. 37 in [7]) 
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 In Eqs A1 and A1, the subscript, a, represents either h 

or e.  The other parameters are given by he nnn 


, 

hheep nnn   , exB RyqTk /)/( , (these from p. 

3689 of [7]), 32 / nU i  (Eq. 38 of [7]), 3
exionic aNn   (p. 

3687 [7]) , N = ND + NA, aa m/*  , and the remaining 

variables are listed in Tables I, II and III of [7]. 
 

APPENDIX B 

 
Altermatt et al. show that Fermi–Dirac rather than 
Boltzmann statistics must be applied when modelling 
heavily doped emitters [1].  With Fermi-Dirac statistics, the 
carrier concentrations relate to the Fermi energies by the 
equations, 
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where Efn and Efp are the electron and hole Fermi 
energies, and F1/2 is the Fermi operator of order 1/2, 

defined as 
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where 

 2/)2/3(  . (B4) 

 With the better known Boltzmann statistics, the 
equations are the same as Equations B1 and B2 except 
that the F1/2 operator is replaced by the exponential 
operator. 
 Figure B1 shows how the Fermi–Dirac and Boltzmann 
equations differ for n/Nc at 300 K.  They yield the same 
result when Ec – Efn > 0.05 eV, but diverge as Efn 
approaches and exceeds Ec;  the latter occurs in samples 

that are either in very high injection or that are heavily 
doped, when the semiconductor is said to be degenerate. 

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

-0.2 -0.1 0 0.1 0.2 0.3

Ec - Efn  (eV)

n
 /
 N

c
  
  
a

t 
3

0
0

 K

Fermi-Dirac

Boltzmann

 
Figure B1: n/Nc calculated by Boltzmann and Fermi–

Dirac statistics at 300 K. 
 



 
 

 Thus, in heavily doped n-type, the pn product can be 
accurately expressed as 
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where p is well approximated with Boltzmann’s statistics 
whereas n must be expressed with Fermi–Dirac statistics.  
 In [1] it is shown how Equation B5 can be simplified to 
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 The degeneracy factor deg is dependent on the 
difference between the intrinsic conduction-band energy 
Ec0 and the electron Fermi energy and defined as 
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hence, deg is the ratio of the functions in Figure B1 and 
less than unity in heavily doped silicon, approaching unity 
as doping decreases—evident in Figure 1. 

 The bandgap narrowing factor BGN includes all terms 

with Ec and Ev and is defined as 
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BGN increases with doping as evident in Figure 1. 

 We can now state how the pn product is determined in 

Step 6 of the computational procedure for n-type silicon: 

(6a) Equation B1a is employed to determine 
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and that n  = ND. 

(6b) The inverse F1/2 function is applied to determine 
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(6c) Ec from Step 5 is added to determine 
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(6d) The pn product is calculated from Equations B6, B7 

and B8 using the results of Steps 6a, 6b and 6c.  
Note that in equilibrium, EFn = EFp = EF. 

 In this appendix, we have stated the relevant 
equations for heavily doped n-type silicon.  Equivalent 
equations can be derived for heavily doped p-type. 

 
APPENDIX C 

 
 We employ the method of Del Alamo and Swanson to 

solve for Jp(x) and p(x) [6, 19] though without recourse to 

the special solutions.  This is only valid in regions of quasi-

neutrality, p(x) = n(x), and therefore not in depletion 

regions associated with the junction or with surface charge 
(or in regions with significant trapping).  The solutions are 
also only valid in regions of low injection, which can be an 
important stipulation in the lower doped regions deep in 
the diffusion—as in the example. 
 This elegant approach combines the effect of drift and 
diffusion and takes into account the changes in doping 

and bandgap by solving for p(x)/p0(x) and Jp(x), where 
the carrier concentrations are 

 )()()( 0 xpxpxp  , (C1a) 

 )()()()()( 0 xpxNxnxnxn D  , (C1b) 

the minority carrier current equation is 
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the minority carrier continuity equation is 
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Dp(x) is the diffusivity and equal to qµp(x)/kT, and U(x) is 

calculated from standard models for SRH and Auger 
recombination, which depend on p(x), p0(x), n(x) and n0(x). 
 The two boundary conditions are: 

 









)0(

)0(
)0()0(

0
0

p

p
pSqJp , (C4) 

and 
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where we define xj as being x when n0(x) = n(x), which 

ensures we do not solve in regions of high injection. 
 Thus, there are two field equations, two boundary 

conditions, and two variables, p(x)/p0(x) and Jp(x).  The 

program solves for these variables using the shooting 
method with 100 evenly spaced nodes, taking into account 
the complicated dependencies associated with µp(x) [3, 4], 

U(x) [5], and xj on p(x).  It is due to these dependencies—

and to the speed of modern computers—that we simply 
solve the equations numerically and disregard the many 
analytical approximations [10, 16] or the manipulation [6, 
19] used by others. 
 To our knowledge, it has not previously been 
recognised that it can be necessary to reduce xj as Vj 
increases in order to ensure the solutions correspond to 
just the low-injection region.   As shown in Figure 1e, the 
emitter enters high injection near the metallurgical junction 
at high Vj.  (In fact, it makes no sense to discuss an 
emitter in high injection since at this point it is no different 
to the lower-doped base.)  This aspect is critical to an 
accurate assessment of J0E and JLE at high Vj or when 
G(x) is significant for x > xj. 
 By this method one can solve for any G(x), S, and 
Vj(xj) (or alternatively Jp(xj)).  The program does so for the 
conditions stated in Step 9. 

 


